Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior.
نویسندگان
چکیده
A multidisciplinary approach was followed to investigate whether the opioid-like peptide nociceptin/orphanin FQ (N/OFQ) regulates the nigrostriatal dopaminergic pathway and motor behavior. Nigrostriatal dopaminergic cells, which express N/OFQ peptide (NOP) receptors, are located in the substantia nigra pars compacta and extend their dendrites in the substantia nigra pars reticulata, thereby modulating the basal ganglia output neurons. In vitro electrophysiological recordings demonstrated that N/OFQ hyperpolarized the dopaminergic cells of the substantia nigra pars compacta and inhibited their firing activity. In vivo dual-probe microdialysis showed that N/OFQ perfused in the substantia nigra pars reticulata reduced dopamine release in the ipsilateral striatum, whereas UFP-101 ([Nphe1,Arg14,Lys15]N/OFQ(1-13)-NH2) (a selective NOP receptor peptide antagonist) stimulated it. N/OFQ microinjected in the substantia nigra pars reticulata impaired rat performance on a rotarod apparatus, whereas UFP-101 enhanced it. Electromyography revealed that N/OFQ and UFP-101 oppositely affected muscle tone, inducing relaxation and contraction of triceps, respectively. The selective NOP receptor nonpeptide antagonist J-113397 (1-[3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one), either injected intranigrally or given systemically, also elevated striatal dopamine release and facilitated motor activity, confirming that these effects were caused by blockade of endogenous N/OFQ signaling. The inhibitory role played by endogenous N/OFQ on motor activity was additionally strengthened by the finding that mice lacking the NOP receptor gene outperformed wild-type mice on the rotarod. We conclude that NOP receptors in the substantia nigra pars reticulata, activated by endogenous N/OFQ, drive a physiologically inhibitory control on motor behavior, possibly via modulation of the nigrostriatal dopaminergic pathway.
منابع مشابه
Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism.
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administr...
متن کاملOpioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding.
The recently discovered neuropeptide orphanin FQ (OFQ), and its opioid receptor-like (ORL1) receptor, exhibit structural features suggestive of the micro, kappa, and delta opioid systems. The anatomic distribution of OFQ immunoreactivity and mRNA expression has been reported recently. In the present analysis, we compare the distribution of orphanin receptor mRNA expression with that of orphanin...
متن کاملOrphanin FQ/nociceptin suppresses motor activity through an action along the mesoaccumbens axis in rats.
OBJECTIVE Intracerebroventricular administration of orphanin FQ/nociceptin (OFQ/N), the endogenous agonist ligand of the opioid receptor-like (ORL-1) receptor, decreases extracellular levels of dopamine and suppresses motor activity. The presence of the ORL-1 receptor on mesoaccumbal and nigrostriatal dopaminergic neurons raises the possibility that an action along these pathways may be one mea...
متن کاملNociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism.
Endogenous nociceptin/orphanin FQ (N/OFQ) inhibits the activity of dopamine neurons in the substantia nigra and affects motor behavior. In this study we investigated whether a N/OFQ receptor (NOP) antagonist, J-113397, can modify movement in naive mice and nonhuman primates and attenuate motor deficits in MPTP-treated parkinsonian animals. J-113397 facilitated motor activity in naïve mice at lo...
متن کاملThe nociceptin/orphanin FQ receptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway.
By using a battery of behavioral tests, we showed that nociceptin/orphanin FQ receptor (NOP receptor) antagonists attenuated parkinsonian-like symptoms in 6-hydroxydopamine hemilesioned rats (Marti et al., 2005). We now present evidence that coadministration of the NOP receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one (J-113...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 30 شماره
صفحات -
تاریخ انتشار 2004